
数列 数学的帰納法：関連問題

数学的帰納法で不等式の証明

nが 2以上の自然数であるとき、
不等式 3n > 2n + 1が成り立つことを
数学的帰納法で証明せよ。
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今回の学習目標
数学的帰納法を使った不等式の証明
● n = 1から始まるとは限らない
● n = kのときの、不等式の利用のしかた
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例 1 nが 2以上の自然数であるとき、不等式 3n > 2n+1が
成り立つことを数学的帰納法で証明せよ。

証明 P (n) = 3n − 2n− 1 > 0 (n ≧ 2)を証明する。
[1] n = 2のとき、

P (2) = 32 − 4− 1 = 4

P (2) > 0であるので、不等式は成り立つ。
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証明 P (n) = 3n − 2n− 1 > 0 (n ≧ 2)を証明する。

[2] n = k (≧ 2)のとき、成り立つと仮定すると、
P (k) = 3k − 2k − 1 > 0である。

3k > 2k + 1
n = k + 1のとき、

P (k + 1) = 3k+1 − 2(k + 1)− 1
= 3 · 3k − 2(k + 1)− 1
> 3 (2k + 1)− 2(k + 1)− 1

= 6k + 3− 2k − 2− 1 = 4k
k ≧ 2であるので、P (k + 1) > 0となり、
n = k + 1のときも不等式は成り立つ。

[1] [2]より、2以上の自然数で P (n) > 0であるので、
不等式 3n > 2n+ 1が成り立つ。
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ビデオを止めて問題を解いてみよう
問 1 nが４以上の自然数であるとき、

不等式 2n > 3n + 1が成り立つことを数学的
帰納法で証明せよ。

math-support.jp 漸化式の図形への応用 (3)



問 1 nが４以上の自然数であるとき、不等式 2n > 3n+1が
成り立つことを数学的帰納法で証明せよ。

証明 P (n) = 2n − 3n− 1 > 0 (n ≧ 4)を証明する。
[1] n = 4のとき、

P (4) = 24 − 12− 1 = 3

P (4) > 0であるので、不等式は成り立つ。
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証明 P (n) = 2n − 3n− 1 > 0 (n ≧ 4)を証明する。

[2] n = k (≧ 4)のとき、成り立つと仮定すると、
P (k) = 2k − 3k − 1 > 0 2k > 3k + 1

n = k + 1のとき、
P (k + 1) = 2k+1 − 3(k + 1)− 1

= 2 · 2k − 3(k + 1)− 1
> 2(3k + 1)− 3(k + 1)− 1
= 6k + 2− 3k − 3− 1 = 3k − 2

ここで、k ≧ 4であるので、3k ≧ 12より、
3k − 2 ≧ 12− 2 = 10 > 0

P (k + 1) > 0となり、 n = k + 1のときも不等式は成り立つ。
[1] [2]より、４以上の自然数で P (n) > 0であるので、

不等式 2n > 3n+ 1が成り立つ。
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例 2 nは 2以上の自然数で、0 < h < 1とするとき、不等式
(1− h)n > 1− nhの成立を証明せよ。

証明 P (n) = (1− h)n + nh− 1 > 0 (n ≧ 2)を証明する。
[1] n = 2のとき、

P (2) = (1− h)2 + 2h− 1

= 1− 2h+ h2 + 2h− 1

= h2 > 0

P (2) > 0であるので、不等式は成り立つ。
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ビデオを止めて問題を解いてみよう
問 2 nを 4以上の自然数とするとき、

不等式 n! > 2n が成り立つことを数学的帰納
法で証明せよ。
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問 2 nを 4以上の自然数とするとき、不等式 n! > 2nが成り
立つことを数学的帰納法で証明せよ。

証明 P (n) = n!− 2n > 0を数学的帰納法で証明する。
[1] n = 4のとき、

P (4) = 4!− 24 = 24− 16 = 8

P (4) > 0であるので、不等式は成り立つ。
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今回の学習目標
数学的帰納法を使った不等式の証明
● n = 1から始まるとは限らない
● n = kのときの、不等式の利用のしかた
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