
三角関数 P2500 三角関数の合成 (有名角) 組 番 名前

sin θ + cos θ のグラフを描いてみよう。
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三角関数の合成� �
A sin θ +B cos θ は、ひとつの波になる。

r cosα · sin θ + r sinα · cos θ = r sin(θ + α)� �
この根本にあるのは、加法定理。

sin(α+ β) = sinα cosβ + cosα sinβ

r sin(α+ θ) = r sinα cos θ + r cosα sin θ

r cosα · sin θ + r sinα · cos θ = r sin(θ + α)
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例 1 sin θ + cos θ を r sin(θ + α)の形に変形せよ。

答 sin θ + cos θ =

問 1 次の式を r sin(θ + α)の形に変形せよ。
(1)

√
3 sin θ + cos θ

答
√
3 sin θ + cos θ =

(2) sin θ − cos θ

答 sin θ − cos θ =

例 2 3 sin θ −
√
3 cos θ を r sin(θ + α)の形に変形せよ。

答 3 sin θ −
√
3 cos θ =

問 2 次の式を r sin(θ + α)の形に変形せよ。
(1)

√
3 sin θ + 3 cos θ

答
√
3 sin θ + 3 cos θ =

(2) 3 sin θ + 3 cos θ

答 3 sin θ + 3 cos θ =
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*+*+*+*+*+*+*+*+ 【解答】*+*+*+*+*+*+*+*+

sin θ + cos θ のグラフを描いてみよう。
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例 1 sin θ + cos θ を r sin(θ + α)の形に変形せよ。
sin θ + cos θ

= 1· sin θ + 1· cos θ
=

√
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)
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√
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)
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√
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√
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問 1 次の式を r sin(θ + α)の形に変形せよ。
(1)
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√
3 sin θ + cos θ = 2 sin(θ + π

6 )
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= 1· sin θ − 1· cos θ
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答 sin θ − cos θ =
√
2 sin(θ − π
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例 2 3 sin θ −
√
3 cos θ を r sin(θ + α)の形に変形せよ。
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問 2 次の式を r sin(θ + α)の形に変形せよ。
(1)

√
3 sin θ + 3 cos θ

(2) 3 sin θ + 3 cos θ

(1)
√
3 sin θ + 3 cos θ

=
√
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√
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)
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√
3 sin θ + 3 cos θ = 2

√
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